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Basic Josephson Junctions

8.1 INTRODUCTION

The macroscopic quantum model that was introduced in Chapter 5 provided
a framework for understanding the basic electrodynamics of superconductors.
This model assumes that the superelectrons can be described by a macroscopic
wavefunction ¥(r,s) that satisfies the Schridingerlike equation and whose
squared modulus is the density of superelectrons, n*(r,7). In Section 5.4 we
further assumed that the wavefunction is of the form ¥(r,¢) = Vn* expif(r,1),
which led to the following for an isotropic superconductor with a constant n*:

Ji(r,t) = — 1 [A(r,t) - i}EffVG(r,t)] (8.1)
A 27
and
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Equation 8.1 is the supercurrent equation (introduced in Equation 5.81) and
describes the current density of the superelectrons in a single piece of material.
Equation 8.2 is the energy-phase relationship (introduced in Equation 5.84) and
shows how the phase of the wavefunction changed in time with the energy of
the superelectrons. The London coefficient A (Equation 2.132) is related to the
penetration depth by

m*

- n*(q*)2 ’
We also found in Chapter 5 that the time derivative of Equation 8.1 led to a
description of perfect conductivity through the first London equation; the curl
of Equation 8.1 to perfect diamagnetism through the second London equation;

and the line integral to fluxoid quantization. In all these cases the supercurrent
has been driven by electric and magnetic fields. In this chapter we show that a
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supercurrent can be induced by maintaining a difference in the phase 8 through
a process known as runneling. When this phase is maintained between two
separated superconductors, a supercurrent results and is known as the Josephson
effect.

The concept of tunneling is a direct consequence of quantum mechanics.
One of the fundamental ideas of quantum mechanics is the wave-particle duality
of nature. We have already seen this idea in Chapter 5 where entities that we
classically think of as wave phenomena can be just as readily considered as par-
ticles. The reverse is also true; although classically we think of an electron as a
particle, it is just as appropriate to describe it in terms of a wave phenomenon.
The consequences of these “matter waves” are far reaching. Just as stray fields
leak out of electromagnetic structures, so too, matter can “leak out” of a con-
finement. Perhaps the best-known example of this is the radioactive decay of
an atomic nucleus. Although the protons and neutrons are tightly bound in the
nucleus, it is possible for them to tunnel out of the nucleus by this quantum
mechanical mechanism.

Electrons can be observed to tunnel as well. Suppose we take a piece of
metal, coat its surface with a very thin layer of insulating material, and then
place another piece of metal on top of that. The geometry of such a sandwich
structure, known as a tunnel junction, is shown in Figure 8.1. If we try to
drive a dc current through the junction, classically we would expect it would
be impossible; the electrons would not be able to pass through the insulating
layer. Indeed, the junction resembles a simple capacitor (with very thick plates!)
and the impedance of a capacitor at zero frequency is infinite. From quantum
mechanics, however, we know that the electrons’ matter waves can stray across
the barrier. There is a very small, but nonzero, probability therefore for an
electron to tunnel through the insulating region. We can increase the probability

Material A Insulator Material B

Figure 8.1 A tunnel junction. Materials 4 and B can be either a normal
metal or a superconductor. The insulating region is greatly
exaggerated in size for clarity and is very thin in reality.
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of having an electron pass through the barrier by making the insulator very thin
(say 10 A thick) and having many carriers available for tunneling (as is in a
metal). Under these conditions, it is possible to pass an observable dc current
through the structure,

Ivar Giaever used these ideas to explain an interesting series of experi-
ments he performed in 1960, Giaever was interested in observing electron tun-
neling between a normal metal and a superconductor. He therefore fabricated
lead-(aluminum oxide)-aluminum junctions. The classification of such tunnel
junctions is known as SIN junctions; the acronym standing for superconductor-
insulator-normal metal. (The aluminum is the normal metal in this case since
the junction is maintained at a temperature below the critical temperature for
the lead, but above the critical temperature for aluminum.) Giaever found that
when the junction was cooled below 7., the resistance of the structure (given
by the inverse slope of the i-v characteristic) increased for a range of volt-
ages as shown in Figure 8.2. This result may at first seem paradoxical, but in
fact, Giaever realized that this effect is very well explained in terms of the gap
predicted by the BCS theory.

Recall from Section 1.3 that the superelectrons can be envisioned as bound
in pairs and that the binding energy is given by 2A. Suppose a Cooper pair is
split up, in the sense that the electrons are no longer part of the superelectron
fluid. Each electron would therefore have an energy of at least A — otherwise
they would pair again (though not necessarily with each other). In other words,
the normal electrons in a superconductor all have an energy at least A above
the energy they would have if the material were not superconducting.

We know that when we pass a dc current through an SIN junction, the
carriers must be normal electrons since Cooper pairs do not exist in the normal
metal, We just observed, however, that all normal electrons in a superconductor

Figure 8.2 An idealized form of the i-v curve for an NIS tunnel junction.
The solid line is the characteristic for temperatures below T,
the dotted line for temperatures above T7,.
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Figure 8.3 The i-v curve for a Josephson junction. The Josephson current
is represented by the current at zero voltage.

are elevated in energy by an amount A. The only conclusion then is that for
a normal electron to tunnel from the metal into the superconductor we must
increase its energy by an amount A. We therefore cannot expect to pass any
current until the junction is biased by a voltage of at least A /e, where e is the
charge on an electron. This is precisely what we observe in Figure 8.2.

Suppose we now consider the case of superconductor-insulator-supercon-
ductor (SIS) tunneling between two identical superconductors. Now there are
no normal electrons available as with the metal in the previous case. We must
therefore break Cooper pairs so that the electrons can tunnel across the in-
sulating region and carry current. As a result, we expect to see a similar i-v
characteristic, only now the minimum voltage necessary to produce a current
is 2A /e, and indeed this is observed.

What about a Cooper pair tunneling through the barrier? The general con-
sensus among researchers before 1962 was that such an event would not happen
often enough to be statistically significant. The reasoning was that as the tun-
neling of an electron has a very small chance of occurring, the tunneling of
both electrons in a Cooper pair simultaneously crossing the insulator would be
astronomically small. In 1962, however, Brian Josephson changed the popular
wisdom.

From his calculations using the BCS theory, Josephson discovered that the
probability of a Cooper pair tunneling through the barrier was the same as that
for a single electron. The reason is that the tunneling for a Cooper pair is an
ordered, coherent process. In other words, we should not imagine the situation
to be two electrons’ matter waves leaking across the insulating barrier. Instead,
it is the macroscopic wave function that tunnels from one superconductor to the
other. By 1963 Philip Anderson and John Rowell had experimentally confirmed
the existence of Cooper pair tunneling.

The i-v curve for an SIS or Josephson junction is shown in Figure 8.3.
As expected we have branches similar to those in the i-v characteristic of an
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SIN junction and these branches represent the normal electron tunneling. The
current at zero voltage is a direct result of the Cooper pair tunneling and is
known as the Josephson current. The curve at zero voltage represents the range
of currents that can flow by Josephson tunneling. These currents require no
voltage for them to pass through the insulating region and their behavior is
fundamentally important to many practical applications that we now survey.

Because of Josephson tunneling, we can apply a dc current to the junction
and not develop a voltage drop across it. However, there is a limit to the amount
of current that the tunneling Cooper pairs can carry and so if too much current
is applied, the Josephson effect is lost and the current is carried by the normal
electrons. The maximum dc current density that can be passed through the
junction at zero voltage is known as the Josephson critical current density J,..
When the applied current exceeds the critical current density, of course, we will
develop a voltage drop across the junction. In other words, we have switched
from a zero voltage to a finite voltage state by increasing the dc current, allowing
us to develop a binary digital logic.

Let us compare this form of digital technology to that based on semicon-
ductors. The first thing to notice is that when a Josephson junction switches,
the voltage across it is typically on the order of millivolts for conventional su-
perconductors. Semiconductor logic, on the other hand, requires a potential on
the order of volts to switch binary states. Thus the Josephson junction made of
conventional superconductors requires three orders of magnitude less power to
operate than standard semiconductor logic, making such a system more energy
efficient. Moreover, the superconducting logic generates less heat and, as a
result, can be packed more densely than the semiconducting equivalent.

Thus far, we have examined what happens when we apply a dc current
to a Josephson junction. What happens if we were to apply a dc voltage? If
the applied voltage exceeds the energy required to break Cooper pairs, we will
return to the sitnation where the normal electrons tunnel and carry current.
Suppose, however, that our applied voltage was less than the threshold, 2A /e.
Such a voltage increases the energy of a Cooper pair and, surprisingly, the
Cooper pairs respond by oscillating back and forth across the junction. In some
cases, the junction will radiate an electromagnetic field. Because the frequency
of oscillation is related to the applied voltage, we could now use this junction
to create a precision oscillator. Conversely, by subjecting the junction to a
time varying electromagnetic field, we can induce a voltage across it. Since
it is relatively easy to measure frequencies to high precision, we can use the
Josephson junction as a robust voltage standard. Indeed, this is currently the
method with which many countries determine the voltage standard.

Just as the behavior of a superconductor is sensitive to a magnetic field, so
too is a Josephson junction. In fact, the maximum Josephson current possible is
modulated by the magnetic field in which a junction is placed. Because Joseph-
son tunneling is another macroscopic manifestation of the inherently quan-
tum mechanical behavior of superconductors, it is effected by even the
smallest amount of flux. Josephson junctions have been successfully used
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in magnetometers known as SQUIDs (superconducting quantum interference
devices) that are sensitive to fluxes as small as a fraction of ®,. Thus, we dis-
cover that the many consequences of the coherent tunneling can be used in a
number of practical ways.

In this chapter we are only concerned with describing the Josephson current
that occurs at zero voltage and that can be described by the macroscopic wave-
function. In fact, under our development, it is the normal electrons’ tunneling
that is more difficult to describe. The discussion of this topic will be given in
Chapter 9.

In Section 8.2 we first consider tunnel] junctions and find a relationship
between the supercurrent density and the difference in phase of the wavefunction
across the junction. We find that the supercurrent density through the tunnel
junction varies sinusoidally with the difference in phase across the junction and
has a maximum value known as the critical current density J.. Throughout this
chapter we consider current densities that are always less than J. so that the
current is always a supercurrent; we refer to such junctions as basic Josephson
Jjunctions. In Chapter 9 we consider the situation in which the current density
can exceed J., and refer to that junction as a generalized Josephson junction.

In Section 8.3 we restrict ourselves to the cases where the junction area is
small enough so that the junction can be represented as a lumped circuit element.
The current rather than the current density is sufficient to describe such a basic
lumped Josephson junction. We discuss the energy stored in such lumped basic
Josephson junctions and the dynamics of some simplified circuits. In Section 8.4
we show how a circuit with two basic lumped Josephson junctions can be
configured to make a superconducting quantum interference device, known as
a SQUID, which is a very sensitive detector of magnetic fields. In Sections 8.5
and 8.6 we relax the restrictions on the junction area so that the junctions are
distributed systems where the currents can have a spatial dependence inside the
junction itself.

8.2 JOSEPHSON TUNNELING

Consider the tunnel junction in Figure 8.4, which shows a current source driv-
ing a current from the superconductor in region 1 across an insulating barrier
of thickness 2a into the superconductor in region 2. In general, the supercur-
rent density Ji{x,y,z,7) in each superconductor is given by the supercurrent
equation of Equation 8.1. The supercurrent density at the edges of the junction
at x = ta is denoted by J,{+£a,y, z,t). We would like to find a relationship be-
tween the current density at the insulating boundaries and the value of the phase
of the wavefunction at each boundary. To do so, two simplifying assumptions
are made. The first is to consider the junction area (wd) to be small enough
so that the current density can be considered uniform. (The length scale over
which this approximation is valid is discussed in Sections 8.5 and 8.6.) We de-
note this uniform current density by J,. The second assumption is to consider
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Figure 8.4 A Current Source Driving a Current across a Tunnel Junction

the magnetic vector potential to be zero, as it would be in the absence of any
electric and magnetic fields. After finding the relationship between the current
density and the phase at the insulating boundaries, we relax these two simplify-
ing assumptions. Consequently, the supercurrent density in the superconductors
at the superconductor-insulator boundaries x = +a is given by Equation 8.1 as

J(+a,t) = wzij\V(J{ia,t) =J,. (8.4)

Likewise, in the absence of electric and magnetic fields, Equation 8.2 yields

o 1 /AJ2 £,
5}'9(:&0,{)—“"’{(2"*) m""ﬁ"’ (8.5)

where £, = m*v?/2 is the kinetic energy due to the moving superelectrons and
is a constant. Consequently, the time dependent wavefunction can be written as

W(r,1) = U(r)e &), (8.6)

where ¥(r) is the time independent wavefunction.

We must now find the wave equation for the superconducting pairs when
they are in the insulator. We model the insulator as a region with a constant
potential V, that is greater than &,. Figure 8.5 shows how the potential V'{x) is
modeled across the junction. With classical equations of motion from Newton’s
laws, the superelectron in region 1 would have to maintain the same energy &,
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Figure 8.5 The model potential of the insulator V{x) and the magnitude
of the wavefunction |¥]. The two superconductors have
densities of superconducting electron pairs n} and nJ,
respectively. Furthermore, the phase of the wavefunction &
can be different for the two superconductors at x = *a.

as it travels toward the insulator. Because V, > &,, the kinetic energy of the
particle would have to be negative for the superelectron to be in the insulating
region. However, the kinetic energy of a classical particle cannot be negative
so that the superelectron is forbidden to be in the insulator. Consequently, the
superelectron would not have enough energy to surmount the potential to get into
in region 2, and no current would flow. Now let us see what happens quantum
mechanically. Because the pairs must maintain the same energy £, the wave
function can be written in terms of the time independent wavefunction ¥(r)
of Equation 8.6. Moreover, because we are in a region of constant potential
energy V,, the time dependent Schridingerlike equation (Equation 5.27) can be
written as the time independent Schrddingerlike equation:
h2

- mvhp(r) = (& -V,)¥(r) for x| <a. (8.7)

Our two simplifying assumptions allow us to choose a wavefunction ¥(x) that
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depends only on x. The solution to Equation 8.7 for ¥(x) can be written as a
sum of growing and decaying exponentials, or equivalently as

¥(x) = C; cosh % + C; sinh % . 8.8
where ( 1s the decay length in the insulator and is defined as
;2
T () &9

This decay length ( is considered a phenomenological parameter and is a prop-
erty of the insulator and not of the superconductor. It is not to be confused with
&, the coherence length in the superconductor. Recall from Section 5.3 that a
changing wavefunction implies a supercurrent density given by (Equation 5.38)

J, =9 Re {xp*fv\p} . (8.10)
m i

When the wavefunction from Equation 8.8 is put into Equation 8.10, the su-
percurrent density Jg simplifies to
qh .
Js = mm*c Im {CI Cz} . (8.11)

Consequently, the supercurrent density across the insulator is a constant with
respect to x, as expected from current continuity, and depends only on the
values of C; and (.

The coefficients C; and C; can be determined by specifying the wavefunc-
tion at the two boundaries of the insulator. Therefore, we will take

¥(—a) = \/n7 e (8.12)

and
U(+a) = /ni e, (8.13)

where | /n} and 6, are the value of the magnitude and the phase of the wavefunc-
tion at the boundary x — —a, and similarly for the other boundary at x = a.
Equating these wavefunctions with Equation 8.8 gives

Je'® = C, cosh% + G, sinh% 8.14)
and
J/are'® = €\ cosh fé- — ¢, sinh fé (8.15)
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Solving for C; and C; yields

Fg * 18
3 _{,_ 2
c =Yt TV 8.16)

2 cosh (a/¢)

and

C, = — ymeh — et 8.17)

2 sinh (a/¢)

Substitution of Equations 8.16 and 8.17 into Equation 8.11 yields the su-
percurrent density

Ji = Jcsin{f; — 6,). (8.18)

Here J. is known as the critical current density of the junction, and its magnitude
is given by

;- q*fi ,/n‘{‘n; B eh oY 8.19)
7 m*({ 2sinh (a/¢) cosh{a/¢) ~ 2mcsinh (2a/C)° '

where we have rewritten the values of the mass, charge, and density for a
Cooper pair in terms of the parameters for an electron. Experimentally for a
tunnel junction ¢ is a fraction of a nanometer and typical thicknesses of the
insulator is a few nanometers; that is, 2a/¢ > 1, so that sinh2a/( =~ €2?/%/2,
Hence, the critical current density decreases exponentially with the thickness of
the insulator. In this chapter the current density driven through the junction is
always considered less than the critical current density so that only supercurrents
are flowing across the junction. In Chapter 9 we show that when the driving
current density exceeds the critical current of the junction that some of the
current must pass through a parallel channel that is a resistive normal channel.

The fact that a supercurrent density can flow across the insulator is known
as Josephson tunneling because the superelectrons are said to tunnel from one
superconductor to the other through the potential ¥'. Most importantly, Equa-
tion 8.18 shows that the supercurrent through the junction varies sinusoidally
with the phase difference 6, — 8, across the junction in the absence of any scalar
and vector potentials. That a difference in phase should drive a supercurrent
across an insulator is somewhat expected from Equation 8.1, which states that
the gradient of the phase drives a supercurrent in a single piece of supercon-
ductor. What is unexpected is that the supercurrent density in the Josephson
effect goes sinusoidally with the difference in phase. This relationship between
the supercurrent density and the phase is known as the Josephson current-phase
relation. When the insulator is made to vanish we expect to recover the super-
current equation for a connected piece of superconductor. In fact, for identical
superconducting electrodes ni = ny = ny, and taking the limit of Equation 8.18
as a — 0, we get Equation 8.1 when the magnetic vector potential is zero.
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The first assumption in the derivation of the current-phase relation of Equa-
tion 8.18 can now be relaxed by noting that the argument still holds if applied
locally to each point on the boundary. In particular, J, is generalized to J,(y, 2},
the supercurrent density at each point on the boundary of the insulator. The di-
rection of the current density will always be considered to be in the x-direction
so that there is no divergence of the current density. Consequently, for any
given y and z the current will flow straight across the junction so that the cor-
responding wavefunction at that same y and z can still be chosen to have the
dependence on x given by Equation 8.8. However, the decay length in the in-
sulator could depend on y and z; for example, if the insulator were not made
of the same material. Likewise, the thickness of the insulator 2a could also
depend on y and z if the insulator were not uniform. Consequently, the critical
current density given by Equation 8.18 can also depend on y and z so that the
current-phase relation must be generalized to

Js(y, Ly t) = ‘}C(.V} Z) sin [91 (ye Z, t) - 92()’: <s t)] . (8'20)

Unfortunately the Josephson current-phase relation of Equation 8.18 still
depends on the second assumption; namely a vanishing vector potential to rep-
resent the vanishing magnetic flux density in the junction. More generally we
can choose the magnetic vector potential to be written as

A(r,t) = —Vx(r,1) 8.21)

to ensure that B = 0 in the junction, where x(r,¢) is an arbitrary single-valued
function. Now choose a new gauge

A =A+Vx=0, (8.22)

so that in this gauge the vector potential vanishes. Consequently, in this gauge
the current-phase relationship is the same as Equation 8.20:

J, = Jsin (0] - 6,), 8.23)

where 6 and 8] are the phases of the wavefunction in the gauge with A’. In
Section 5.4, we found that the phases of the wavefunctions in the two gauges
are related by

6':9-~¢—X3 (8.24)

where |g*|/h has been replaced by 27/®,. Therefore,

2
0 — =0 — 6 -5 (01— x2) - (8.25)
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The difference of a scalar function M (r) between two points can be written as
a line integral between those points by

T,
M) -M@)=—] VM-dl (8.26)

r,

Then the difference {y; — x2) can be written as a line integral from point 1 in
region 1 to point 2 in region 2 of the gradient of x so that

2 2
—/ Vx-dI:/ A(r,1)-dl, 8.27)
I H

where the gradient of x has been written in terms of A. By defining ¢ = 8] — 6],
we can write the current-phase relation as

Jo(r,1) = Ty, 2.0) sinp(y, 2,1) (8.28)

where @ is known as the gauge-invariant phase difference and is given by

D3, 2.8) = 0, (3, 2,1) — Oy (3,2, 1) — / A1) 8.29)

The path of integration is in the direction of the current; that is, the path is
across the insulator from the superconductor with 8, to ,, which in Figure 8.4
is from x = —a to x = +a, and the differential line element is denoted by 4l.

Equations 8.28 and 8.29 have been derived in the special case when the
magnetic flux density B vanishes in the junction. That these two relations also
hold in a magnetic field can be made plausible by taking the limit as g — O
of Equation 8.28 and using Equations 8.19 and 8.29. When n} = n} = n;, we
recover the supercurrent equation (Equation 8.1), which is valid when B is
nonzero. Consequently, it is plausible to assume that the current-phase relation
and the gauge-invariant phase difference of Equations 8.28 and 8.29 also hold
in the presence of an externally applied magnetic field, although this will not
be proved here.

We now discuss the dynamics of the gauge-invariant phase difference. The
time derivative of the gauge-invariant phase difference is

dp 08, 06, 29 [

o = o T o b ) Amn-dl (8.30)

The substitution of the energy-phase relation (Equation 8.2) into Equation 8.30
gives

ot h

—gz—q/Art (8.31)
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The supercurrent density is continuous so that Js{(—a) = Js(a), and

dp 2w f? OA
. T e —_ —_— e . I . -
o o), ( vV % ) d (8.32)

The difference in the scalar potentials has been expressed as a line integral of
its gradient. The term in parentheses is just the electric field E in terms of
the scalar and vector potentials, as was shown in Section 5.3 (Equation 5.44).
Consequently, Equation 8.32 becomes

2
,,,,,, 2hend) 2 [ E(r,1) - dl. (8.33)

Equation 8.33 is known as the Josephson voltage-phase relation. Consequently,
the fundamental equations governing the behavior of Josephson junctions are the
current-phase relation, the gauge-invariant phase relation, and the voltage-phase
relation; namely, Equations 8.28, 8.29, and 8.33, respectively. In Section 8.3,
these equations are applied to some simplified junction structures and circuits.

Although the Josephson relations have been derived for a tunnel junction,
they, in fact, also apply to more general types of structures. What is essential
in our analysis is that the two superconducting wavefunctions interacted with
each other through a region where these wavefunctions decayed spatially. In
Chapter 10 we explore such structures, such as a microbridge.

8.3 BASIC LUMPED JUNCTIONS

In many interesting devices Josephson junctions can be understood by consid-
ering the gauge-invariant phase difference and the current density to be uniform
over the cross section of the junction, Such a junction will be called a basic
lumped junction. This junction can be described by a current

; :/J-ds (8.34)

and a similarly defined critical current /. ; the region of integration is the surface
area of the junction. The current-phase relation (Equation 8.28) can be rewritten
in terms of the currents:

i = I.sinp(s), (8.35)

and the gauge-invariant phase difference is still given by

2
o) =000~ 0a0) - 5 [ Afr) -1, 8.36)
o JI
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namely Equation 8.29. The voltage-phase relation of Equation 8.33 can be
simplified by noting that jf E - dl s just the voltage v{¢) across the junction. The
voltage is well defined for the lumped junction because the path of integration
is well defined as being across the junction and because for a lumped junction
the electric field at the terminals is independent of y and z. The voltage-phase
relation then becomes

dp _ 27 (8.37)

where v is the voltage drop across the junction in the direction of the current
flow.

Note that the derivative in Equation 8.37 is a total derivative because for
a lumped junction y is independent of any spatial coordinates and depends
only on time. The junction is referred to as basic, because the current that
can be driven through the junctions is restricted not to exceed /. so that only
supercurrents flow. In Chapter 9 we discuss generalized junctions and how a
current greater than /. can be accommodated by an additional resistive parallel
channel for normal current flow. Figure 8.6 shows the symbol for a basic
lumped Josephson junction along with the two main governing equations. In
this section we show that energy can be stored in a lumped junction and discuss
how the lumped junction behaves when it is driven by various sources.

To find the energy of the lumped junction, consider a current source driving
the junction. Let the current be slowly changed from zero to some nonzero
value. Let the initial gauge-invariant phase difference ¢ be zero when the current
is zero. As the current is slowly changed to a new steady-state value i, the
gauge-invariant phase difference must also slowly change in time to reach the
value consistent with the current-phase relation. When the current has reached
its new value i; the voltage will be zero. However, during the time that the
current slowly changed, @ had to also change. Therefore, according to the
voltage-phase relation of Equation 8.37, a voltage must have been generated
while ¢ was changing. Therefore, the current supply must have done work on
the Josephson junction since an amount of power /v was being expended by the

i=1sing

D dy

£

2n ot

Figure 8.6 The basic Josephson junction as a lumped circuit parameter is
denoted by the crossed symbol in the circuit diagram and is
governed by the two equations shown.
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power supply during this process. The energy W; of the junction is then the
integral of the power; namely,

fo
Wy :/ ivdt . (8.38)
0

Here v is the voltage generated while the current i is being changed from zero
current at time f = O to the final value of the current at time f,. Writing the
current and voltage in terms of ¢ by recalling the current- and voltage-phase
relations of Equations 8.35 and 8.37 yields

I (I) dip’
= 1 & ’\ —o- —rm— -
W /{} (1, sin ") (:m yh ) dr. (8.39)

This integral for the energy can be written as

’)
W, = ol j sin ' di’ (8.40)
27 Jy

where ¢ is the phase difference associated with the driving current i and given
by the current-phase relation. Direct integration gives

®, 1.
W, — W, — 207r CoS P, (8.41)

and here W,, = ®,1./27 is a constant. Figure 8.7 plots the difference in en-
ergy and the current of the junction as a function of the gauge-invariant phase
difference, The energy is lowest when no current flows and ¢ is a multiple of
2.

Having found the governing current-phase and voltage-phase relations as
well as the energy stored in the basic lumped junction, we now discuss the
dynamics of the junction. If the lumped junction is driven by a time dependent

Figure 8.7 The current i and the energy difference W; — W, as a
function of the gauge-invariant phase difference across
a basic Josephson junction.
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current, this current creates a time dependent ¢ given by the current-phase
relation, and thereby generates a voltage according to the voltage-phase relation.
On the other hand, if the lumped junction is driven by a voltage, the dynamics
can be more complex and we now turn our attention to this situation.

When a voltage v{s) is driven across a basic lumped Josephson junction,
the gauge-invariant phase difference changes in time according to the Joseph-
son voltage-phase relation, namely, Equation 8.37. If the driving voltage is a
constant V,, then ¢ increases linearly in time as

@(t) = w(0) + — V,t. (8.42)

Consequently, using the current-phase relationship of Equation 8.35, we see
that an ac current

2
i = I sin lg; Vyt + @0)} (8.43)
= 1. sin Rrfit + £(0)] 8.44)

develops across the junction. This effect is known as the ac Josephson effect
and f; is the Josephson frequency, given by

Vo 2
=g = { = 483.6 x 102V, (Hz). (8.45)

The corresponding time constant for a basic Josephson junction is then f,™!.

For a constant driving voltage of 10 uV, the current will oscillate at about
5 GHz. Because a few microvolts is typical of the lower voltage range applied
to a Josephson junction, we see that we are generally operating at frequen-
cies in the microwave regime. In some circuits at these frequencies care must
be taken in considering other parts of the circuit as lumped circuit elements.
For example, waveguides, which are not lumped circuit elements, are often
used in the microwave circuitry with Josephson junctions. In addition, at these
high frequencies the junction can emit radiation. Because the Josephson
junction is similar to the same waveguide structure that we considered in
Section 4.4, it is not surprising that the emitted radiation is greatest when
the Josephson frequency is a resonant frequency of the structure, The power
of the emitted radiation for a single junction is usually less than a micro-
watt and detection is hampered by the impedance mismatch between free
space and the waveguide structure. It is interesting to note that the recipro-
cal phenomena holds: radiation can be coupled to an unbiased Josephson
junction, causing the inverse ac Josephson effect in which a dc voltage appears
across the junction.

We have found that a constant driving voltage generates an ac current in



8.3 Basic Lumped Junctions 409

a Josephson junction. Now consider the case of a driving voltage that is time
dependent. In particular, let

v(t) =V, + V; cos wit. (8.46)

From the integration of the voltage-phase relation (Equation 8.37), the gauge-
invariant phase difference is found to vary in time as

2 2V,
o) = 9(0) + == Wyt + =

i : 47
o, Bom sin wqt (8.47)

From the current-phase relation, this phase results in the current varying as

) ) 27 27V, .
i = I.sin (Lp{(}) + a’ Vot + q)awz sin wst). (8.48)

The frequency of the current is the superposition of a constant frequency f; =
Vo/®, and a sinusoidally varying phase. Therefore, the frequency of the current
response is not the same frequency as the driving voltage. This is because
the nonlinear current-phase relation can couple different frequencies with the
driving frequency. Although the resulting current has a complicated dependence
on time, it is similar to the dependence on frequency found in FM signal
analysis. To get a better understanding of the time dependence of the current,
we rewrite Equation 8.48 as a Fourier series. This can be accomplished with
the aid of the Fourier-Bessel series identity

eiosinx Z {J,,(b)]e“”, (8.49)

n= oG

where J, is the nth order Bessel function of the first kind. To apply this identity,
note that the argument of the first sine function in Equation 8.48 is of the form
(a + bsinx) so that

sin (@ + bsinx) = Im {e““*"“““} ) (8.50)

The Fourier-Bessel series identity along with the fact that
J_n(b) = (—1)"Ju(b) (8.51)

allows us to write

+oc +00
pilatbsing) _ Z J,,(b) oflatnx) Z (—1)"J,(b) eila—m) (8.52)

nw= — oo 7= —ok
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Consequently, the imaginary part of Equation 8.52 gives

sin {a + bsinx) = Z (—=1)"J,(b)sin (a — nx). (8.53)

e =00

Therefore, the current in Equation 8.48 can be written as

_ i‘ ! (2”” 5 )] sin[(27fy —nws)t +2(0).  (8.54)

D,ws

This series shows that the nonlinear current-phase relation gives a current re-
sponse in which the frequency f; due to the dec part of the driving voltage couples
to multiples of the driving frequency w;. Again |i| < I. must be satisfied for
the analysis with the basic junction to be valid (so that only supercurrents flow
in the circuit); the more general case will be taken up in the next chapter.

Of particular interest is the fact that the current response can be at zero
frequency even when the driving voltage is at a nonzero frequency; that is, an
ac voltage drive can result in a dc current response. This dc¢ current will occur
when the argument of the sine term in Equation 8.54 vanishes; namely, when
2n f; = nw, or, equivalently when

Vo=n (q)o) W (8.55)
27

For a particular n the average dc current {i) must satisfy

[{i) | < L J, (Eﬁ.ﬁ) : (8.56)

b, Wy

the exact value depending on the initial value ©(0). When a driving voltage
at 1 GHz is applied across the junction for various values of V,, a constant
dc current will appear at V, = 0 and at integral multiples of about 2 V. This
spacing in the values V, that gives a constant current response is expected
between neighboring values of » in Equation 8.55. Let this voltage spacing
be denoted by év. Note that the relationship between év and the applied fre-
quency, f; = wg/27, depends only on fundamental constants; namely, from
Equation 8.55, év = (h/2e)f;.

8.4 SUPERCONDUCTING QUANTUM INTERFERENCE

Two Josephson junctions can be combined in parallel to produce a device known
as a superconducting quantum interference device (SQUID), which is a sen-
sitive detector of magnetic flux. Figure 8.8 shows two such identical basic
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Figure 8.8 Two Josephson junctions connected in parallel by

superconducting wire. The path of integration C
is shown by the dotted line.

lumped Josephson junctions connected in parallel and joined by superconduct-
ing wire, The first junction is characterized by i/ = I, sin ¢, and the second by
i; = I, sin 3. The total current { is

i =i+ iy = I.singy + 1. sin s 8.57)

= 21. cos (fl_;_?g) sin(f—’m:-;mfg—) . (8.58)

The difference in the gauge invariant phases can be found by integrating V6
around the closed path C shown in Figure 8.8 and noting that § is a multivalued
function that can change by 27n upon completing the path, where n is an integer.
Carrying out the integration we have

f V8 -dl = 27n (8.59)
C

=0 — 0s) + (6 — 6p) + (02— O)+ (6 — 6s).  (8.60)

where the integral has been divided into four terms consisting of differences
of phases. The first and the third term are differences across the Josephson
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junctions and follow directly from the definition of the gauge-invariant phase
difference in Equation 8.29; namely,

91; - 0a = —@ — —f A-dl (8.61)

and
z——/ A dl. (8.62)

The second and the fourth terms are differences in the superconducting wire
itself and are found by using the supercurrent equation for V§ in Equation 8.1:

9c*9b:f Vﬁ-dlz—%z/AJ'dl~m/ A-dl (8.63)
b o Jb

and

9‘,—@1:/ Vﬂ-dlz—%g AJ - d1-~—/A dl. (8.64)
d

e Jd

Substitution of Equations 8.61-8.64 into Equation 8.60 gives
2
992"“\,91227{‘11"?"";5—%.4.611 / AJ < dl + AJ dl. (8.65)
o JC

Note that the integration of A is around a complete closed contour C and is
equal to the total flux ® inside the area enclosed by the contour. The integration
of J follows the same path as the contour C but excludes the integration over
the insulators; for convenience this integration will be denoted compactly by

AJ'dlEf AJ~d1+f AJ - dl, (8.66)
ol b d

where C’ is an incomplete path that follows C but excludes the insulators. The
difference in the gauge-invariant phase differences can then be written as

27d  2nx
e AJ - dl. 8.67
3, + 3, /. ( )

2 — ¢ =2n+

If the superconducting wire is thicker than a few penetration depths, then the
path of integration can be taken deep inside the superconducting wires where the
integral involving the current density is negligible. Equation 8.67 then simplifies
to relate the phase difference to the total flux by

2nd
d,

Yr— @ = 2mn + (8‘68)
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The total current as given in Equation 8.58 becomes

. Tdy | 7P
i = 21, cos(&;:) sin (w + 75,:) . {8.69)

Let the inductance of the loop be L. The total flux becomes the sum of the
externally applied flux ®y;, and the flux generated by currents flowing in the
loop. We have restricted ourselves to having the two junctions and the two sides
of the loop as identical. The currents can be written as

l‘g e I +I{:§r (8.70)

and

1.2 = [ — Icir . (8.71)

Here 7 = (i, +i,)/2 is the average current common to both currents and hence
generates no net flux in the loop. On the other hand, I = (i} —i,)/2 is the
circulating current and generates a flux LI;,. The total flux is then

® = @y + LI, 8.72)
Ll . .

= Qo + > (sing) — singy) 8.73)

= Pexy + LI sin ( f%&) cos ( ﬁ%ﬂ) . (8.74)

Using Equation 8.68, we can write the total flux as an implicit function of ®y,
and Pl

TP

. ad
D = Peyp — LI, sin (T}:) coS (cp; + -2{-)—;) : 8.75)

In summary, Equations 8.69 and 8.75 must be solved self-consistently to de-
scribe the behavior of the SQUID. We first consider the case when the induc-
tance is negligible so that the total flux is just the applied flux; then the more
general case is considered. In all cases we seek the maximum driving current
imax that can be sent through the SQUID such that the current through each
junction does not exceed the critical current of each junction. This current is
important since for |i} < imux, each junction will be operating as a basic junc-
tion that is consistent with the initial assumptions of this chapter. If |i| > impax,
then, as is shown in Chapter 9, some of the current must flow through a parallel
normal tunneling channel and some resistance will appear across the junction.
Therefore, i, delineates the regions between seeing no resistance and seeing
a resistance in the SQUID. The onset of this resistance can be detected as the
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driving current exceeds inmax, SO that the value of i, i an important device
parameter that forms the basis of operating a SQUID.

The Special Case L/, <« ®.,,. When the flux produced by the circulating cur-
rent is negligible, the total flux is the externally applied flux ®.,.. This condition
will hold as long as LI, « ®.4. At a given dgy,, the current i, is found by
maximizing Equation 8.69 with respect to ¢, as follows. The extremum of the
current occurs when the derivative of the current in Equation 8.69 with respect
to ¢y vanishes, which happens when

cos (@ + TPex /Dy) = 0. (8.76)
Thus, at the extremum
sin (@) + 7@ext /P,) = +1, 8.77

and the maximum value of / is found by taking the sign of the sine term so that
the current is positive. This results in

T ey
ces( 3, )
which is periodic in the external flux as shown in Figure 8.9. If the area enclosed
by the SQUID is 2 cm?, then the current is periodic for every 10 pT (107! T),
With the use of pick-up coils to transport the flux from near a human body
to a SQUID detector, magnetic fields generated by the human brain (~ 1 {T)

can be measured. Magnetometers based on SQUIDs are discussed further in
Section 9.5.

8.78)

imax ~ 21,

P/P

[

> &b ¢ ; = @ /D

ex{ 1 0 1 ) ext 02

-1+

{a) (b}

Figure 8.9 (a) i,y versus &, for identical Josephson junctions in
parallel when the self-induced flux is neglected so that
P ~ P, as in (b).
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The General Case. In general, both the external flux and the flux due to the
circulating current comprise the total flux so that Equation 8.75 is satisfied.
The maximum current iy, that can be sent through the SQUID at a given
.y is again found by maximizing Equation 8.69 with respect to o, with the
constraint given by Equation 8.75. This problem has been solved numerically
by de Bruyn Ouboter and de Waele and some of the results are shown in
Figures 8.10 and 8.11. We see that for the value of the inductance chosen
that the modulation of the critical current is reduced in comparison to the
modulation shown in Figure 8.9 for negligible inductance. Furthermore, the
total flux begins to become a steplike function of the applied flux in contrast to
being equal to the applied flux as when LI, < ®.y,. To understand this behavior
we note that for large enough inductances such that LI, > &, the circulating
current will tend to cancel the applied flux. The loop of the SQUID will look
more and more like the single loop of superconducting wire that was studied in
Section 5.5. Consequently, the total flux in the loop will tend to be quantized
as

& = oy + LI, ~ nd,, (8.79)

where n is the integer closest to ey /P,. This means that the total flux will
follow the staircase pattern as a function of the external flux as shown in Fig-
ure 5.3. In Section 5.5 we showed that this staircase pattern was a result of
minimizing the energy of the superconducting loop. We found that a loop cooled
in a field was described by this behavior, but that the dynamical equations for
a single loop made the flux constant as a function of applied flux when the
loop was already superconducting. Therefore, we see that a superconduct-
ing loop with a Josephson junction behaves differently than a superconduct-
ing loop. The reason that the Josephson junction always maintains the lowest
energy state is that ¢, is free to assume any value. Therefore, the circulating
current becomes

QCX( - n(I)O
e (8.80)

which tends to zero as L increases. With this negligibly small circulating cur-
rent, the applied current divides nearly equally down both paths. The maximum
applied current will then occur when I, goes through each junction so that
imax =~ 21, for all applied fields. To see why i, has a small deviation from
21., consider the flux being increased initially from zero. A small circulating
current will flow to oppose the flux so that

(I)exl
Icir ~ I (8'81)

when n is zero initially. Therefore, the current {; will tend to decrease while
the current i, will tend to increase. However, {; cannot increase beyond I, so
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Figure 8.10 (a) i versus ®g for identical Josephson junctions in
parallel when LI. = 5&,/=. The currents through the two
junctions when { = i, are denoted as i; and {,. (b} The
total flux versus the applied flux &g. Source: R. de Bruyn
Ouboter and A. Th. A. M. de Waele, “Superconducting
Point Contacts Weakly Connecting Two Superconductors,”
from Progress in Low Temperature Physics, Vol. VI, edited
by C. J. Gorter. Copyright © 1970 by Elsevier Science
Publishers. Reprinted with permission.



8.4 Superconducting Quantum Interference 417

2[ HaX

i
max

rll
0 t { —> E«»‘
5 013 4

Figure 8.11 The upper (i,5,,) and lower (i,,) bounds of the modulation
of imax as a function of the inductance. The plot is in
reduced units of wLI. /®,. Source: R. de Bruyn QOuboter
and A. Th. A. M. de Waele, “Superconducting Point
Contacts Weakly Connecting Two Superconductors,” from
Progress in Low Temperature Physics, Vol. Vi, edited by
C. J. Gorter. Copyright € 1970 by Elsevier Science
Publishers. Reprinted with permission.

it will be fixed at /. as /; decreases. Specifically because i, = iy + 2I;, then i,
decreases as

i~ L, — 2%5 (8.82)
as i, remains fixed at /.. This behavior is shown in Figure 8.10 as the external
flux is increased from zero and is less than &,/2. When the external flux
exceeds $,/2, then n = 1 and the circulating current changes sign so that the
roles of i; and i, are reversed, and this reversal happens periodically with every
®, /2. With these values of i{; and i, the modulation of the total maximum

current can then be approximated as

2| ®ext — NP, |

i 8.83)

imax =~ 21c -

Figure 8.11 shows i, and i}, , which are the lowest and highest to which
imax €an be modulated by the external flux. Consequently, for large inductances
the maximum modulation in the current is

it~ m% (8.84)

max max

because i}, = 2I. and i, occurs when the external flux differs from an inte-
gral number of flux quantum by a half of a flux quantum.
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A graphical method will now be given that allows one to pictorially account
for what the total current and energy is in the SQUID as well as in each
individual junction. First we rewrite two of the governing equations for a single
Josephson junction as follows:

i = Ising (8.85)
and
2n(W — W)
$, = ~1I.cos . (8.86)

These equations can be represented as components of a two-dimensional phasor
(vector) as shown in Figure 8,12, The phasor has a magnitude /. and the angle it
makes with the negative vertical axis is the gauge-invariant phase difference .
The projection of the phasor on the horizontal-axis is the current across the
junction and hence we refer to the horizontal axis as the current axis. Likewise,
the projection of the phasor on the vertical axis is equal to 2n (W — W,)/®,,
which is proportional to the difference in the energy. The vertical axis is referred
to as the energy axis.

The phasors are particularly useful in analyzing the two junction SQUID,
as in Figure 8.8. There the total current i is just the sum of the individual
currents

i =1.,sing +1,sinp,; . 8.87)

where the two junctions are now allowed to be different. Consequently, if the two
currents are represented as phasors, as shown in Figure 8.13, then their vector
sum would have a projection on the current axis that satisfies Equation 8.87,
The difference in energy is also the sum of the differences of each junction,
namely,

2r(W — Wp)
o,

= ~l,c08 ) — I.2c08 @y . (8.88)

.fo)

2n(W- W,

=

—{,cos &p[

-

Figure 8.12 The Josephson Phasor
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Figure 8.13 The Josephson Phasors for a SQUID with Two
Different junctions

The projection of the resultant vector on the energy axis in Figure 8.13 also
satisfies the above equation. For the two junction SQUID the difference in the
gauge-invariant phase differences is related to the total flux by Equation 8.68,
which we repeat here:

oy — oy =2mn + 212 (8.89)

+ 4)0 ‘

The phasor construction in Figure 8.13 shows that although the difference in the
phases is fixed by the flux, the sum of the phases can be made to vary. Moreover,
the sum of the phases @ = (¢, + ) is just the phase of the resultant vector.
When no current { is applied, the resultant vector is parallel to the energy axis
and has its phase set to zero. As the applied current is increased, the resultant
phase increases and reaches a maximum at ¢ = 7/2 so that the resultant vector
is parallel to the current axis. The magnitude of the maximum current that
can be sent through the SQUID is just the magnitude of the resultant vector.
Therefore,

27%
imax = \/ 12 + 12 + 2115 cos u (8.90)

o
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where Equation 8.89 has been used to express the difference between the indi-
vidual phases. In general, Equation 8.90 must be solved self-consistently with
the total flux in the loop (Equation 8.75), a procedure that must be solved nu-
merically as before. However, when the inductance is small enough such that
Li. &« ®y, the total flux is just the applied flux in Equations 8.89 and 8.90.
For identical junctions, Equation 8.90 is equivalent to the previous expression
found for the maximum current; namely, Equation 8.78.

The Josephson phasors also give a good picture of the ac Josephson effect.
The phasor is initially at some angle ©(0) as shown in Figure 8.12. The applied
voltage V, causes the phase to increase at a constant rate so that the phasor
rotates at a constant angular frequency 27 f;. Thus the projection of the phasor
on the current axis varies sinusoidally in accord with Equation 8.44. Also the
difference in energy changes sinusoidally with the same frequency but —90°
out of phase with the current.

8.5 SHORT JOSEPHSON JUNCTIONS

Thus far we have considered the Josephson junction as a lumped circuit element
where the gauge-invariant phase difference and the current density are consid-
ered uniform throughout the area of the junction. In Sections 8.5 and 8.6 we
generalize to cases where the gauge-invariant phase difference and the current
density through the junction can vary, and we shall refer to such junctions as
extended Josephson junctions. The behavior of extended Josephson junctions
in a magnetic field forms the basis of single junction SQUIDs and also the
switching scheme in most logic and memory circuits.

In this section we analyze the behavior of extended Josephson junctions in
a magnetic field by first assuming that the magnetic field produced by the cur-
rents through the junction is negligible in comparison to the externally applied
magnetic field. Such junctions are referred to as short junctions, We find that a
single short junction can produce an interference pattern and that vortices can
exist in the junction and cause dissipation. The analysis of the energy stored in
the junction reveals a new characteristic length scale. The short junction then
is more precisely defined as a junction whose length and width are small com-
pared to this characteristic length. In Section 8.6 we analyze the behavior of
long Josephson junctions, where long indicates that the length of the junction
is longer than the characteristic length, and we show that self-fields are then
important, Long Josephson junctions have many of the same general features
of short junctions but with the additional constraint that the fields and currents
decay away from the center of the vortex on a length scale of the characteristic
length; hence this length is called the Josephson penetration depth A;.

Consider the cross section of a Josephson junction as shown in Figure 8.14.
The two superconductors are separated by an insulating barrier of thickness 2a.
Each superconductor has a thickness, &, and &,, which is much larger than its
respective penetration depth A, and A;. The superconductors extend a length d
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Figure 8.14 The cross section of a Josephson junction. The current flows
across the junction in the —x-direction.

in the z-direction and a width w in the y-direction. We will take d > 2a and
w >> 2a so that effects due to the edges will be ignored. The externally applied
magnetic flux density is in the y-direction so that B = B,i, and B, is constant.

Now consider two points @ and P, which are an infinitesimal distance Az
apart along the z-axis, which is taken to be in the center of the insulator. The
gauge-invariant phase difference between the two points is found by considering
the contour in Figure 8.14. An analysis identical to that of the SQUID with two
lumped junctions can be made by letting the points a, b, ¢, and d in Figure 8.14
correspond to the same labeled points in Figure 8.8. This analysis results in
the same relationship; namely, Equation 8.67. Consequently,

o(P) - 0(0) m_.zfrw%E%A.dHZ_” AJ-dl (891
‘I’o C (bo fogd

2r® 27 [ ay.al. (8.92)

= 27n +
(I)o (po C’

where & is the total flux inside the area of the integration path C and f,., AJ - d1
is an integration over the same path but excluding the insulator. The integration
of the current density along one segment of the path in the x-direction cancels
with the contribution of the adjacent path, which is an infinitesimal distance
Az away. Each part of the path in the z-direction is taken many penetration
depths away from the surface of each superconductor. There the currents in-
duced by the external magnetic field will be exponentially small so that the
only current density is the applied current. But the applied current is in the
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negative x-direction, so it is perpendicular to the direction of the path and,
hence, contributes nothing to the integral of the current density. Therefore,
the line integral of the current density vanishes so that the difference in the
gauge-invariant phase differences becomes

2ad
P (P) = 2(Q) = T~ (8.93)

where the phase difference is measured modulo 27, Furthermore, the magnetic
field decays exponentially into each superconducting slab so that the total flux
enclosed is

& = B,(A\ + XM +2a)Az. 8.94)
Now
Gy
o(P) — p(Q) = Be Az, (8.95)
so that in the limit of infinitesimal Az, Equations 8.93 and 8.94 give
Oy 2
2z = 3, Byheg, (8.96)
where
het = Ay + A2 +2a. 8.97)

A similar argument can be made by choosing the point P to be an infinitesimal
distance Ay in the y-direction to give
?)_; = —% B hog (8.98)

where care has been taken with regards to the direction of the contour and
the direction of the magnetic field. Both Equations 8.96 and 8.98 state that the
phase changes in a certain direction only if there is a component of the magnetic
field perpendicular to that direction,

For short junctions we, by assumption, neglect the self-fields from the
currents and take B = B,i,. The phase then does not change in the y-direction
so that ¢ = {z). Equation 8.96 integrates directly to give

2
o(z) = § Bohegz + ©(0) (8.99)

where ©(0) is a constant and is the phase at the origin. The resulting supercur-
rent density in the insulator is in the x-direction and is given by the current-phase
relation of Equation 8.28 so that

Js(v.z.t) = J.(y,z)sin p(z,1). (8.100)
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Furthermore, the total current through the junction is
d/2 w2
J—dj2J—wj2

Let the critical current density be a constant J. over the area of the junction so
that Equation 8.101 integrates simply to

. Dy
sin
i(®s,0(0) =1 WTUO sin{(0)) . 8.102)
¢,

Here ®; = B,h.gd is the flux through the junction, and I, = J,wd is the max-
imum critical current through the junction and the same critical current as for a
lumped junction. Hence we see that the total supercurrent depends not only on
the flux through the junction but also on the integration constant {0). Just as
in the case of SQUID made from two lumped junctions, we seek the maximum
supercurrent {m.x that can be put through the junction because for i < i, only
supercurrents flow through the junction. The maximum supercurrent that can
be sent though the junctions occurs when sin ¢(0) = +1, so that

. 7Py

sin
Lax (B)) = 1, W : (8.103)

o,

Figure 8,15 shows i (®;) and is referred to as the single junction interference
pattern,

To understand why the maximum supercurrent has the general shape of
Figure 8.15 we consider the current density distribution for different amounts
of flux @, in the junction, as shown in Figure 8.16. When the applied magnetic
flux density B, is zero, the flux through the junction ®; vanishes. Therefore, the
gauge-invariant phase difference is a constant (0) according to Equation 8.99,
The resulting supercurrent density is constant throughout the junction so that
the maximum supercurrent occurs when J; is also a maximum, which happens
when ¢(0) = #/2. In Figure 8.16 the arrows are drawn proportional to the
magnitude of supercurrent density J;(z) at a point z in the insulator when the
current is a maximum: the direction of the arrows indicate the direction of
the current density. The case of zero flux is shown in Figure 8.16a where the
current density is a constant J.. Also noted in Figure 8.16 is the value of the
flux in the junction, the variation of the phase with z, the difference in the phase
across the length d of the junction, and (0) for the maximum current. If current
less than the maximum were to be sent through the junction, then Figure 8.16a
would look the same except that the arrows representing the magnitude of J;(z)
would be scaled to J. sin ¢ (0).
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Figure 8.15 i, (®,) for a single short josephson junction when the
self-fields have been neglected.

Now let the externally applied flux density be increased until &; = &,/2.
Then ¢(z) varies linearly with z as

27
o) = T 0 5 +0) =7 7+ 2(0) (8.104)

according to Equation 8,99, as indicated in Figure 8.16b. Therefore, the super-
current density varies sinusoidally with z. The difference between the phases
from one end of the junction to the other is

w(%) - y(_‘;) . (8.105)

so that a half a period fits into the junction. Figure 8.16b shows the sinusoidal
nature of the current density where the arrows indicate the direction and mag-
nitude of the supercurrent in the junction, Which half period to put into the
junction depends on the choice of ¢(0). In Figure 8.16b the phase was cho-
sen to be (0} = #/2 so as to depict the maximum supercurrent density. The
maximum total current must be more when there is no flux, in agreement with
Equation 8.103. There are other possible choices of how to position the half
period, which correspond to choosing different values of ¢(0). For example,
if the period were moved to the left by a quarter period by choosing ©(0) = 0,
then the supercurrent would be equal and opposite in the different halves of
the junction so that the total current would be zero; this would clearly not be
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Figure 8.16 The current density distribution for i, (®;) for a single
short Josephson junction. The value of ¢(0) that maximizes
the current density is chosen for each picture. Source:
From D. N. Langenberg, D. ]. Scalapino, and B. N. Taylor,
“The Josephson Effects.” Copyright (©) 1966 by Scientific
American, Inc, All rights reserved. Reprinted
with permission.
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the scenario for the maximum current. Recall that it is only the supercurrent
in the insulator that is shown in the figure. The supercurrent density is being
driven from the top electrode to the bottom one. It is uniform upon entering
the top electrode at x = a + b| because the length and the width were chosen
smaller than the penetration depths. Nevertheless, to conform to the supercur-
rent density shown in the figure at the insulator, the supercurrent density must
rearrange itself. This can be done because b; > A;. Likewise, the supercurrent
density must rearrange itself to be uniform at x = —(a + b, }, which it can also
do because b, > Ap.

When &, = &,, the total phase difference across the length of the junction
is 27 so that a complete period fits in the junction, as shown in Figure 8.16c.
The total current flowing through the junction is zero. If the position of the
starting part of the period is changed by choosing a different (0}, a total
period will still fit in. Yet for the choice {0) = 0 shown in Figure 8.16¢, the
supercurrent in the insulator must flow downward on the left side of the junction
and upward on the right. How can the supercurrent density have such a pattern
in the insulator and still have no net driving current so that the supercurrent
density is zero at x = a+ by and x = —(a + b,)? It can do so by having the
pattern shown in Figure 8.17. The supercurrent on the left side of the junction
turns around in the top electrode so as to match the supercurrent density in
the insulator on the right side. The supercurrent can easily bend as needed
since by > A;. The resulting supercurrent density pattern in the superconductor
resembles the pattern of a vortex, and is known as a Josephson vortex. But this
vortex has no need of a normal core since the supercurrent density is zero in
the center.

When ®; = 38,/2, then one and a half periods fit into the junction, as
shown in Figure 8.16d. The current from the full period (a vortex) is zero so
that the total current is determined by a half period. This current is smaller than

v

-~y

Figure 8.17 The supercurrent density distribution in the superconducting
electrodes and across the insulator for the case of ®; = &,.
The pattern is known as a Josephson vortex.
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when one half period fits the whole junction. Consequently, the current density
will generally tend to decrease as ®; increases as shown in Figure 8.15.

As ®; increases further the supercurrent will be zero whenever an integral
number n of ®, fit into the junction. This means that n complete periods are
put into the junction corresponding to n complete vortices. Hence, we see that
the driving current is zero whenever a full number of periods (that is, vortices)
fit in the junction.

Josephson vortices are useful in understanding the interference pattern given
by Equation 8.103 and depicted in Figure 8.15. Another useful method is the
following analogy. Using Equations 8.100 and 8.101, we can write the current
as

i = wim {ej""(o) / | Je(2) ef’“dz} , (8.106)

where k = B(;heﬁ' In general the integral in Equation 8.106 will be a complex
number havmg both a magnitude and a phase. When the integral is multiplied
by ¢/*® only the phase of the resulting expression changes. Therefore, the
maximum current is just the magnitude of the integral; namely,

/A J.(z) e** dz

Inspection of this equation shows that the maximum amount of the current is
just the magnitude of the Fourier transform of the shape of the junction. This
is analogous to the result in Fourier optics, which states that the intensity of the
light is the Fourier transform of the slits. Here the Fourier transform variable
is k = %Boheg. For example, if the junction is a segment of length 4, then
its Fourier transform is a function of the form sin{kd/2)/{kd/2) in agreement
with Equation 8.103. Likewise, if the configuration is two lumped junctions
connected in parallel as in Figure 8.8, then the shape can be modeled as two
impulse functions. This shape has the Fourier transform of the form cos(kd/2),
which agrees with Equation 8.78.

Having found the interference pattern due to the short junction, we now
find the energy W, associated with a short Josephson junction, as shown in
Figure 8.14. The energy W; is

(8.107)

lmax = W

W, =W, + W, | (8.108)

where W, is the energy stored in the superconductor and W, is the energy stored
in the insulating region. For an MQS system W, was found in Section 3.5 to
be

W, — 2;0 / (Bz-l— AJz) dv (8.109)

where the integration is over the superconducting volume ¥ and it is implicit
that the current in this expression is the supercurrent only. This expression
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is not valid for the insulating region because W, was derived assuming the first
London equation, which is not valid in the insulating region. Therefore, to find
W, we must return to the expression for the power delivered to the insulating
region; namely, for an MQS system

d OB
a;mn:[/m(u~~5?+E~3)dv, (8.110)

where Vi, is the volume of the insulating region. The second term in the integral
can be simplified by using the current-phase relation (Equation 8.28). Note that
the supercurrent J; in Figure 8.14 is along the negative x-direction. Therefore,

J=J(y,2)i = —4(r.2)k, @.111)

and with Equation 8.100, we find that J = —~J.(y,z,1)sinp(y,z,¢)i,. The
electric field is in the negative x-direction for the sign of the voltage chosen in
Figure 8.14. If we assume that the insulator is thin enough so that the electric
field is constant over it, then the voltage-phase relation (Equation 8.33) gives

& 1 0
E, = —5;;“2"&'3}“»9()’,2,!), (8.112)

where the path of integration for E; was taken directly across the insulator.
With B = y,H and J, and E,, the power becomes

d d I . P Je ,
’KE;VI“—E;‘/K”(Z—M—C’B “271_‘2“&“(:05\,9)(1"‘ (8.113)
The energy in the insulating region is then

B 1, @ J
- .Lin<m8 m%zacosap) dv + W, (8.114)

where W, is an integration constant. Since @ and J. do not depend on x, the
second term in W, can be integrated over the height 2g of the insulator to give

1
W., = m—-f BdeM/ Eiﬂ—.}":(y,z)cosnp(y.:zJ)a’ya’z-I— W,, (8.115)
210 Jy, S 27

where §;, is the surface area of the insulator. Thus the total energy is

1

W=
20 Ju4v,,

Bldv + %/ A dv
v,

d
+/ 2_;10(3’»3) (1 —cosly,z,t)] dydz. (8.116)
Slﬂ
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In the last term the constant W, was chosen as

®, I,
%—/Smﬂlc(y,z)dydz— TR 8.117)

so that the energy would conveniently match that of the lumped junction (Equa-
tion 8.41) whose critical current can be modeled as J, = 1.6(y)é(z).

We are now in a position to put our definition of a short junction on a
more well defined basis. The assumption that in a short junction one is able
to disregard the magnetic field produced by the currents is now more naturally
interpreted as the condition that the energy stored in the junction due to the
external field Wg is much larger than the energy due to the currents that flow W;.
In other words, a short junction is one in which Wp > W;. Now Wj is just the
first two integrals in Equation 8.116. For the case where the thicknesses of
the superconductors are larger than the penetration depths, the first integral
dominates the energy so that

Wy~ L

Bldxdydz. (8.118)
20 Jy,+v,

The region of integration over which the magnetic field affects the junction is
the cross-sectional area wd times the effective distance f.g the magnetic field
penetrates, since the magnetic field penetrates not only the thickness of the
insulator but also a A into each superconducting electrode. Consequently,

1
pAT

1 ®iw

WB - 2—)“0 heffd ‘

Blhegwd = 8.119)

Now the energy due to the currents in the junction W; is just the last integral
in Equation 8.116 so that

w/2 d/2
W; = / [ dydz J.(y.z2) [l —cos p(z)] . (8.120)
27 f_sa J a2

For simplicity we will consider the case of a constant critical current density
Jo. Using Equation 8.99 in integrating Equation 8.120, we find that

7,
&1 sin ———
W, = = 1 — D, 2-cos (p(O)) | - (8.121)
P,

We have used again that &; = Byhgd is the flux through the junction and
I, = Jowd is the maximum critical current through the junction.
A typical flux ®; for the short junction approximation is ®,; this is also
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the flux for which the identifiable structure of a vortex appears. With ®; = @,
in Equation 8.121,

W, = Polc . (8.122)
27

The contribution from the external field is

O2w
WB = m . (8-123)

The condition for our analysis for a short junction to be accurate is that

A < olw

o S ihond (8.129)

Writing the critical current in terms of the critical current density, we can
cast this inequality into an equivalent expression in terms of the length of the
junction; namely,

d <y, (8.125)

where {; is a characteristic length of the Josephson junction and is given by

7P,

PR LR
! #'ojcheff

(8.126)

Hence, a short junction is one whose length is smaller than £;. In Section 8.6
we see how £; enters in as the natural length scale in the equations that describe
extended junctions.

Having seen that vortices can be used to visualize the current distribution
for a current driven junction, we now show that these same vortices can be
used to understand properties of short junctions when they are driven by a
voltage source. Let a constant voltage V, be applied across the junction. For a
short junction the flux density is approximately equal to the external field in the
y-direction so that B =~ B,. Hence, the gauge-invariant phase difference must
satisfy both Equation 8.96, '

Dp 2w
F ol Boheg, (8.127)

and the Josephson voltage-phase relation Equation 8.33,

?E_ZW

8[ _ ?6“ o (8.128)
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The solution to these equations is

2 2
o(z2,1) = == Bohurz + 2= Vot + 9(0) (8.129)
2
= '&')'?“-“r Bohcff(z - ut) + 99(0]3 (8'130)
where
V,
U= — B’ (8.131)
The current density is then dependent on both space and time as
J(y,z,8) =J(v,2)sinp(z — ur) . (8.132)

The current through the junction has the same spatial pattern as for a zero-
voltage case but the pattern itself moves with velocity «. For the case of a
constant J., the patterns are the ones depicted in Figure 8.16. These patterns
can be pictured as a vortex with a period p = ®,d/®.y; this is the length over
which the phase changes by 27 along the z-direction. As defined, the period p
can be larger or smaller than the length of the junction. Let n, be the number
(or fraction) of vortices in the junction at some time. Therefore,

- d o (I)ext
n, — ﬁ = ?o . (8-133)
Then the amount A that the gauge-invariant phase difference changes in the
junction is just

Ap =27mn,. (8.134)

Consequently, the rate at which vortices move through the junction is

d 1 dAy W,

= — —r =2 8.135

dt 2m dt ®, ( )
This is the same relationship that was found in Section 7.4 for flux flow for
vortices in a type II superconductor. However, note that vortices in a Josephson
Junction do not have a normal core but still dissipate energy when they move.

8.6 LONG JOSEPHSON JUNCTIONS

We now consider the effects of the self-induced magnetic fields on the behavior
of the extended Josephson junction shown in Figure 8.14. The derivation leading
to the spatial change of the gauge-invariant phase difference due to the magnetic
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flux density in Equation 8.96 is general for the geometry considered, so again
we have

Op 2w
- = — B, .136
9z o, )heﬂ's (8 13 )
where A,z = A + A; + 2a. The magnetic field is produced by both the applied
field and the currents and must satisfy Ampeére’s law with the constitutive rela-
tionships B = p,H and D = ¢E in the insulator:

V x B = o + et %? . (8.137)

We first consider the case where the fields and currents do not depend on
time. The externally applied magnetic field is in the y-direction. The resulting
magnetic field depends only on z, because d and w are both much greater than
2a. Therefore effects on the fields due to the edges of the junction are negligible.
Likewise, the current density in the insulator is in the negative x-direction and

also depends only on z.
Ampere’s law gives

0B, (z)

e 22 e Lo Iy (2) 8.138

62 !U’O (Z) ( )

The spatial derivative of Equation 8.136 combined with Equation 8.138 gives

.................... = — et J (2) . (8.139)

We further assume that the critical current density is a constant J. over the
area of the junction. However, note again that the supercurrent in Figure 8.14
is along the negative x-direction. Therefore, as in Equation 8.111, Jy(»,z) =
—Js(¥,2) so that J.{z) = —J, sin ¢(z). Equation 8.139 can then be written as

Op(z)  sinp(z)
- — . (8. 140)
gz2 N

Here A, is known as the Josephson penetration depth and is given by

| %
A} — m . (8-141)

Note that within a factor of order unity, A; is equal to the characteristic length
¢; found in Section 8.5 (Equation 8.126).

Hence, we see that the gauge-invariant phase difference satisfies the nonlin-
ear differential equation 8.140, which in most cases must be solved numerically.
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We will solve the nonlinear equation in a few special cases where analytical 2
solutions exists to get a feeling for the types of solutions. -t
The first case where an approximate solution to Equation 8.140 can be
given is when the length of the junction in the z-direction 4 is much smaller
than the Josephson penetration depth, that is, when d <« A,, which is just the
condition for a short junction. Equation 8.140 can then be approximated as
& p(z)/8z* ~ 0, which has the solution &p/0z is a constant. Comparing this
solution with Equation 8.96, we find that the condition for a short junction
is equivalent to the assumption of neglecting the self-fields, as was done in
the previous Section 8.5. Consequently, the solution for the phase is given
by Equation 8.99. To get an estimate of typical Josephson penetration depths
let heg ~ 500 nm, then A\, ~2 pm for J, = 10° A/m?, and \; ~ 20 um for

J. = 10°A/m?.
Another solution to Equation 8.140 is the particular solution to the differ-
ential equation; namely,

o(z) = -2 sin™' (sech < ;20) . 8.142)
J

which can be verified by direct substitution. Here z,, is a constant. The corre-
sponding magnetic field is found from Equation 8.136 and is

B,(z) = Lo sech (z _____ —z Fl) _ (8.143)

Likewise, the resulting current density is found from Equation 8.138 and is

d -z Z2—2
J.{7) = L tanh( ") sech( ") 8.144
(2) ’n’;z.{,)\?,heff AJ Ay ( )
— 2J, tanh { 229 ) sech [ L%} . (8.145)
Ay A

For the general solution to a differential equation, we must also know not only
the particular solutions but also the homogeneous solutions in order to match
the boundary conditions. We will, however, restrict ourselves to those special
cases where only the particular solution given by Equations 8.142-8.145 is
needed.

One example is to consider the case where the origin is chosen at z,, and
@(z) is chosen to vanish at z = £oo in a junction of infinite length. Then the
particular solution is the full solution that satisfies the boundary conditions
and the magnetic field and current density are shown in Figure 8.18. For this
particular solution the field and current density decay with the characteristic
length of A;. Furthermore, the current density does not have a maximum at
the same position where the magnetic field is largest. To understand what this
particular solution corresponds to physically we note that the total current in



434 Basic Josephson junctions

} $ h 77

Figure 8.18 B, (z) and J,(z) for a vortex solution in a long josephson
junction when the self-fields have been included.

the junction is zero and the total flux integrates to ®,. Hence, we have the case
similar to the sitnation in Figure 8.16c so that we interpret this special solution
as a Josephson vortex in a long junction. Therefore, we find that the Josephson
vortex is mostly confined to a length of the order of A;.

Another example that is solved by the particular solution is shown in Fig-
ure 8.19 and is known as the asymmetrical in-line Josephson junction. A surface

by >> }x.;

— !72>>3\_2

Figure 8.19 An Asymmetrical In-Line Josephson Junction
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current density X is driven through the two superconducting electrodes, which
have thicknesses larger than their respective penetration depths A; and A,. The
insulating barrier is semiinfinite and exists for z > 0. The current must pass
though the insulating barrier as a Josephson current. Again the dependence of
the fields and current density in the insulator varies only in the z-direction. In
the empty space between the superconducting planes for z <0, By (z) = K.
In the region z > 0, the gauge-invariant phase difference is governed by Equa-
tion 8.142, and the fields and currents are given by Equations 8.143 and 8.145.
The constant z, is found by demanding that the tangential component of the
field be continuous; therefore, z, is such that

®, Zo
B, (0) = p,K = T ih sech(-;\-—;) . (8.146)

We can rewrite Equations 8.143-8.146 for the current density and fields for
z >0 as

Z—%
sech( 3 )
By(z) = nK Z“’ (8.147)
sech (K;)
and
N tanh (z ;z(,) sech (Z ;ZO)
Jo(2d) = — ! Lok, (8.148)
A sech Lo
AJ
where
B af K
Zo = Ay sech (2/\].]() . (8.149)

The maximum surface current density K, that can be driven through this
in-line junction occurs when z, = 0, so that K. = 2A;J.. This result is rea-
sonable since the maximum surface current density is on the order of J. A;.

As with a short junction, an energy W can be found for long Josephson
junctions. In fact the analysis in Section 8.5 leading the expression for W in
Equation 8.116 also holds for the long junction. The total energy is then the sum
of the energy in the insulating region W, and the energy of the superconducting
region W;. Recall that

— 1 2 2
W= g L (B + o AT ) dv, (8.150)
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from Equation 8.109 and

Wi = 21 / Bde+/ %Jc(y,z) [l ~cosp(y.z,t) dydz, (8.151)
to Jv_ s, 2

from Equations 8.115 and 8.117. Expressing the magnetic flux intensity in terms
of the gauge-invariant phase difference with Equation 8.136 and integrating over
x and y results in

a0\ 2
Wi = @Ziiw / dz {% A3 (dgo) + (1 — cos (,o)] . (8.152)

0z

As an example we calculate the energy stored in the vortex solution of
Equation 8.142. We use a trigonometric identity and Equation 8.142 to write
the second term in the integral as

o2 (PN w2 L
I — cosy = 2sin (5) = 2sech ()\,)' (8.153)

Likewise, the first term in the integral can be simplified by using Equations 8.143
and 8.136 to give

Therefore, the energy per unit length of the vortex, &y, is
. . [ 49,7, A\
g = W _ 2% / dz sech’ (i) D=t (8.155)
w T Jeoo /\_] T

In the presence of a magnetic field we find that the magnetic field intensity B,
at which the vortex will first go into the junction is given by a similar argument
in Section 6.5 for when flux first goes into a type Il superconductor; namely,

B, — “;)f" . (8.156)

Hence,

o Al 28,
! Q TN shegr

8.157)

This result is intuitive because it is approximately the magnetic field intensity
for a flux quantum area distributed over an area A\; by h.g.

Just as in the case with the short junction, vortices can also be used to
visualize the current distribution of long junctions that are driven by a voltage
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source. The gradient of the gauge-invariant phase difference is given by Equa-
tion 8.136 with the magnetic field intensity being both a function of z and ¢.
The partial derivative with respect to z of Equation 8.136 when combined with
Ampere’s law from Equation 8.137 gives

6299(21 t} _ Zﬁheff
dz2 R

OE,
Ot

{#o-]x (z.1) + poe (8.158)

The parallel plate structure of the junction allows us to write the electric field
as E; = —v/2a, where v is the voltage across the junction, the path of integra-
tion of E is taken directly across the junction, and fringing fields have been
neglected. Substituting for E, and using Equations 8.111, 8.28, and 8.33, we
see that

62([? . 271'"’165
azz @,

&, &
!:pof sinp + 6‘“2’ ") &f . 8.159)

Using the definition of the Josephson penetration depth from Equation 8.141,
we can rearrange Equation 8.159 to write a wave equation for the junction as

o 10% 1
5~ 3 aa T o Sine, (8.160)
0z w Or /\?,

where i, is the velocity of the TEM mode in a transmission line and is given

by
u, = W/mekeﬁ M *//\+a (8.161)

Equation 8.160 is known as the sine-Gordon equation. It is nonlinear and
has many interesting types of behavior. We give only a small sampling of some
of the solutions, One familiar solution occurs when the critical current is zero.
In this case the right-hand side of Equation 8.160 vanishes and reduces to the
familiar linear wave equation. In fact by taking the partial time derivative of the
linear wave equation and recalling that the voltage is proportional to the time
derivative of the phase, we find the usual wave equation for the voltage for the
TEM mode for the parallel plate geometry discussed in Section 4.4,

Another class of solutions can be studied by linearizing the sine-Gordon
equation, Let

@(z,1) = po(2) + 1 (2,1) (8.162)

where ¢,(z) is a time independent solution and ¢, is a small deviation from
@wo(2) such that ¢ < ,(z). Under these conditions a good approximation is

sin(z,7) = sinp, + ©; COS @, . (8.163)
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Substituting Equations 8.162 and 8.163 into Equation 8.160 and keeping only
the linear terms in , we find that

P, | FPoy(zt) 1 Fp(za) sing,  cosg,
-+ _ — - o -+ 1z, t). 8.164
dz? 0z? ul 0 A2 VRS S

The first term on the left-hand side of Equation 8.164 cancels with the first
term on the right-hand side because i, satisfies the time independent equation,
Therefore,

__ — = gyl _2 _________ o1(z.1). (8.165)

If we further assume that 2, varies slowly over the scale that ¢, changes, then
@, Can be considered a constant. In such a case the solution is

pi(z.) = e~/ (8.166)
and w satisfies the dispersion relationship

W =k’ 4w (8.167)

Here w, ; is the Josephson plasma frequency and is given by

2
L.L)p“] —

4,
2 COS8 7 - (8.168)
J

For frequencies below w, ;, k is imaginary so that no propagating solutions
exists for these low frequencies. For frequencies greater than w, ; modes will
propagate, and, in particular, at w, ; the wavelength is infinitely long just as it
is for the plasma frequency in a metal. Typical parameters for Nb Josephson
junctions imply w, ; of a few gigahertz when , ~ 0.

8.7 SUMMARY

In this chapter we have shown how the macroscopic wavefunction can extend
across the insulating barrier of a tunnel junction and allow a supercurrent to
flow across the insulator. The resulting Josephson current is maintained by a
difference in the quantum mechanical phase across the junction. We found that
the supercurrent density through the tunnel junction varies sinusoidally with
the difference in the gauge-invariant phase difference across the junction and
has a maximum value known as the critical current density J... Throughout this
chapter we have considered only basic Josephson junctions where the current
densities are always less than J, so that the current is always a supercurrent.
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For a junction that is considered a lumped element, the Josephson current
{ across the junction is related to the gauge-invariant phase difference ¢ by the
current-phase relation of

i=I.sinp.

The gauge-invariant phase difference across the junction is given by

2
@mei—ez—z—”f A(r,1)-dl,
3, /,

where A is the magnetic vector potential and & is the phase of the wavefunction.
The numbered labels refer to the two sides of the junction. If the phase difference
changes in time, then there is a voltage v across the junction that satisfies the
voltage-phase relation

f}'m@m_ﬂ%ﬁ

dt Méo

These three equations govern the properties of basic lumped Josephson junc-
tions.

The sinusoidal current-phase relation leads to a number of properties that
are periodic. For example, the energy W; of the junction is periodic in the
gauge-invariant phase difference as

LB, @,

Wi 2n 27

Cos .

If a constant voltage is applied across the basic junction, then ¢ increascs
lingarly in time. However, the sinusoidal current-phase relation means that a
sinusoidal current in time then flows. Another example of the periodic phenom-
ena that occur is the periodic response of a SQUID to an externally applied
magnetic field. This periodic response is a result of ¢ depending on the applied
field and enables the designing of a device that can sense flux to a fraction of
a flux quantum &,.

For distributed junctions instead of lumped junctions, we saw how the
current-phase and the current-voltage relations could be generalized by having
the gauge-invariant phase difference and the current density depend on their
position in the junction. Again these relations result in the same general types
of periodic behavior as for a lumped junction. For example, a constant voltage
still results in an alternating current. Moreover, we found that this alternating
current is due to Josephson vortices moving across the junction. In an applied
magnetic field a single distributed junction resembled a lumped junction in that
its current is periodic in the applied magnetic field. Vortices again provided a
way to understand this periodic behavior.
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When considering the distributed junction, we found a characteristic length
of the junction, Ay, the Josephson penetration length that is given by

Ay = %
TN 2o Tohes

Here h.¢ is the effective penetration depth into the junction. For short junctions
whose characteristic length is smaller than A;, the magnetic field is the applied
ficld. Conversely, for a long junction whose characteristic length is larger than
As, the self-fields generated by the currents had to be included in the mag-

netic field. This is analogous to including the self-inductance of a basic lumped
junction SQUID.
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of Fundamentals of Solid State Physics by J. R. Christinan (Wiley, 1988). This section
(13.4) of the book is self-contained and can be read independently of the rest of the
chapter. Most of the other elementary derivations of the current-phase relation are based
on an argument that requires more familiarity with quantum mechanics than used in this
book. Nevertheless, this argument is highly readable and is given in Chapter 21 in the
The Feynman Lectures on Physics Volume 111 by R. P. Feynman, R. B. Leighton, and
M. Sands (Addison-Wesley, 1965). An argument similar to the one given in this book
but applied to structures other than a tunnel junction is given in “Superconducting Weak
Links” by K. K. Likharev in Reviews of Modern Physics 51, 101 (1979). Although the
article is at an advanced level, its introduction, which contains the argument, is at a
more intermediate level.

Most of the discussions of lumped junctions include the resistance of the junction,
which is not discussed in this book until the next chapter. Nevertheless, many of the
examples given in these books discuss the limit in which the resistance can be neglected
and hence is equivalent to the basic lumped junction. Chapter 5 of Principles of Super-
conductive Devices and Circuits by T. Van Duzer and C. W. Turner (Elsevier, 1981)
1s devoted entirely to circuits based on lumped junctions. A concise treatment of some
of the main features of lumped junctions is given in Chapter 5 of Superfluidity and
Superconductivity by D. R. Tilley and J. Tilley (Hilger, 1986).

The SQUID with two parallel basic lumped junctions is discussed in depth in Sec-
tion 5.10 of Van Duzer and Turner’s book. The original work in this area is reviewed
extensively in “Superconducting Point Contacts Weakly Connecting Two Superconduc-
tors” by R. de Bruyn Ouboter and A. Th. A. M. de Wacele in Chapter 6 of Progress
in Low Temperature Physics, volume VI edited by C. J. Gorter (North-Holland, 1970).
Although ostensibly devoted to point contacts instead of tunnel junctions, the equations
for the SQUID are identical for any device satisfying the Josephson current-phase rela-
tion. A briefer review is given by de Bruyn Ouboter in the book edited by Foner and
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Schwartz. Chapter 14 in Superconductive Tunnelling and Applications by L. Solymar
(Wiley, 1972) discusses not only a device containing two junctions in parallel but also
a superconducting ring with one junction. A thorough treatment, including a discussion
of the thermodynamic energies involved, of superconducting loops with basic lumped
Josephson junctions is given in Chapter 12 of Physics and Applications of the Josephson
Effect by A. Barone and G. Paterno (Wiley, 1982), This chapter also discusses some of
the nonlinear dynamics that such loops can display.

A discussion of distributed junctions can be found in most of the books already cited,
because distributed junctions are often discussed before lumped junctions. Chapter 4
of Van Duzer and Turner’s book gives a discussion at the same level as this chapter.
Vortices in short junctions are discussed with some excellent graphics in “The Josephson
Effects” by D. N. Langenberg, D. J. Scalapino, and B. N. Taylor in Scientific American
214, No. 5, 30 (1966). Vortex solutions in a long junction are nicely developed in
Chapter 12 of Solymar’s book. A careful discussion of the gauge choice for the vector
potential is given in Section 6.2 of Introduction to Superconductivity by M. Tinkham
{Krieger, 1980). Most other books assume the London gauge when calculating the
effects of the magnetic field on a single junction but this fact is rarely explicitly stated.
Tinkham, however, works the problem in two different gauges. Not realizing which
gauge is chosen accounts for most of the erroneous schemes for measuring the absolute
value of the vector potential with Josephson junctions.

Problems

Problem 8.1 (Supercurrent Equation): Consider a Josephson junction consisting of
identical superconductors so that n} = nj = n;. Let the spacing between the two mate-
rials be a.

a. In the absence of any vector potential, show that the Josephson current-phase rela-
tion given by Equation 8. 18 reduces to the supercurrent equation (Equation 8.1) in
the limit as the spacing a goes to zero such that the two separated superconductors
become one continuous superconductor. Assume that J. is given by Equation 8.19
and that the difference in phase 8, — 6, becomes small as a goes to zero.

b. Repeat part (a) with the vector potential included in the current-phase relation as
in Equations 8.28 and 8.29.

Problem 8.2 (A Loop with a Single Junction): Consider a single lumped Josephson
junction that is connected by a superconducting loop with inductance L.

a. If there are no applied magnetic fields, show that the current in the loop can take

on values given by
=1, sin(zgﬁ1> )

Find the allowed values of { for Li, — 63,
b. Show that the energy is given by
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Plot W — W, versus I for LI. = 6&,. Show that all the allowed values except

I = 0 are metastable, that is, only / = 0 is the true minimum.

Problem 8.3: Now apply a magnetic flux ®gy to the configuration in Problem 8.2,

a,

Show that the total flux ® and the current [ are given by

. { 27d
1 = —L,sxn( o, ) .

and

For small inductances L ~ 0, show that the energy is approximately given by

and that

wi)y-w(,) = —(I;O: cos (%ﬁ@m) :

When the inductance is large, the total flux is quantized so that
P = Oop + LI =nd,, .
Show that the energy is approxXimately given by
W) = 5 (e —nb,)?
2L

and that

W) =W (L) = 57 (B~ 08, -

o2 [2nLl,
8 71'2 L (I)o

)2,

Plot & versus Py and also W{f) — W(l.) versus $ey for the two limiting cases
considered in parts (b) and (¢). Note that when W (1) — W (I.) = O that the system
will switch to the normal state, and will then be able to adjust the value of n to be
in the lowest energy state as the externally applied flux is changed. The plot of

versus Py will be hysteretic for part (¢).

Problem 8.4 (Current Driven Junction): A single basic lumped junction with a critical
current of 1. i1s driven by a current source

i{t) = I, + I, cos wy,
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as shown in Figure P8.1.The dc part of the current is given by I, and the ac part is at
a frequency of w,. The driving current /(z) is always less than the critical current, that
is, L+ || < L.

[OF X

Figure P8.1 A Single Basic Lumped Junction Driven by a Current Source

a. For this circuit show that, in general, the phase is

(1) = sin™! L, + 15 Cos wit
¥ Ic *

and the voltage across the junction is

e, 1 di b, widy sin wit

YEor e dr T 2nl 7
d¢ I - é+£cos' t
LTI

b. If I, > I, show that the voltage can be approximated by

D,  w;sinwt

T 27, :
T l Io 2
AL

¢. If I, > I, show that the voltage can be described by a constant inductance L, which
is given by

P ==

®,

=
2al. 4/ 1 — (;—:)

d. In the opposite limit with I, < f;, show that the voltage can be approximated by

L=

o, weds sinw;t

u27r1, I 2
\/l - (?:coswsr)

e. Show that the dc component of the voltage is zero as long as [/,| + || < I.. Plot
the current-voltage characteristic for the dc component of the voltage versus .

Vo=
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Problem 8.5 (Voltage Impulse Response): Figure P8.2 shows a voltage source driving
a single basic lumped Josephson junction that has a critical current of /.. Let the junction
initially have no currents or voltages across it.

> X

Figure P8.2 A Single Basic Lumped Junction Driven by a Voltage Source

a. Let an impulse of voltage be applied across the junction such that
v(t) = V'8(s),

where §(¢) is the unit impulse function (delta function), Show that the resulting
impulse response of current is

_ . 2xy’
’imp(’) = I sm( 3, ) u(t),

where u(¢) is the unit step function.

b. Supposc the voltage is a series of M impulses such that

M

v(t) = E VISt —i,).

n=1

Show that the current is then

M

. . [ 27 R

l(f) = [, sin (30 E Vn u(I —fn)) .
n=1

c. Explain why the response to a sum of voltage impulses is not the sum of the
individual impulse responses.

Problem 8.6 (Current Step Response): A basic lumped junction is driven by a current
source as in Figure P8.1, Also assume that there are no currents and voltages across the
junction initially, Let the current be stepped across the junction such that

i(1) = Lult),

where u(t) is the unit step function, Show that an impulse of voltage develops across the
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junction such that

v{t) = % sin”' (%) &(t).

Explain how this is consistent with Problem 8.5.

Probiem 8.7 (2D Josephson Junction): Consider the short junction in Figure 8,14, Let
the applied magnetic lux density lie in a general direction in the y-z plane so that

Bapp = Bo,)'iy + Baziz .

Generalize the argument in Section 8.5 to show that

. W‘I)j,v . 7!"‘1’./‘2
Sin - Sin
. (¢ ) I ®O ®0
i = [ .
max »’ £ 7{‘@}1.‘) 7{_@} ,z :
@, &,

where @J!_‘, = Bo,}.keﬁrw and ‘DJ.Z = Bn,zheﬂ'd'

Problem 8.8 (2D Josephson Junction with Fourier Transform): Consider the short
junction in Figure 8.14. As in Problem 8.7 let the applied magnetic flux density Bapp lie
in a general direction in the y-z plane. Show that the maximum current can be written
as the magnitude of the two dimensional Fourier transform of the current density

.

Imax = |f Jc()’aZ)ejk‘r da

where the integration is over all the 2D plane, r is a position vector in the 2D y-z plane,
and da is the differential surface area in that plane. The Fourier transform vector is

@
k = 5~ Buphe

Show that this gives the same result as Problem 8.7,

Problem 8.9 (Circular Josephson Junction): A Josephson junction with constant J, is
circutar with a radius R, Use Problem 8.8 to show that no matter which direction the
applied field B, is in the plane of the junction,

Ji (kR
l’maxxzﬂri ]]ER) >

where

L = J.7R?
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and

@
k = 2—7%30}1&‘}‘ .

Here J| (x) is a first-order Bessel function of the first kind. Plot this result and compare
it to that of a rectangular junction.

Problem 8.10 (Wave Equation for 2D Josephson Junction): Show that the wave equa-
tion for a long junction considered in Section 8.6, which has a constant critical current
density J., generalizes to

H? &2 1 &2 1,
Y + < +—",V-,Z ———")’-,Z = — 81D }’\Z .
™ p(y.2) P @(¥.2) 2 o @(¥.2) 2 w(¥.2)

Problem 8.11 (Effect of the Electrodes): The clectrodes of the Josephson junction are
now considered to be of arbitrary thicknesses &; and b,, as shown in Figure P8.3, and
the penetration depths are A, and A,, respectively.

bl

2

2

Figure P8.3 The cross section of a Josephson junction. The current flows across
the junction in the x-direction.

a. Now consider two points @ and P, which are an infinitesimal distance Az apart
along the z-axis, which is taken to be in the center of the insulator. Take the
contour of integration as shown in Figure P8.3. Show by an argument similar to
that in Section 8.5 that

olP) - 0@ = 227,

where @ is the flux enclosed by the contour.
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b. Show that for a short junction in an applied field B, in the y-direction,
® = B,h.q Az,
where the eftective depth is given by

by
22,

b
he = 2a + A, tanh - + X, tanh
2M

¢. Find h.g in the limiting cases of the thicknesses being larger and smaller than the
penetration depths.



